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Abstract 

Modern complex games and simulations pose many 
challenges for an intelligent agent, including partial 
observability, continuous time and effects, hostile 
opponents, and exogenous events. We present ARTUE 
(Autonomous Response to Unexpected Events), a domain-
independent autonomous agent that dynamically reasons 
about what goals to pursue in response to unexpected 
circumstances in these types of environments. ARTUE 
integrates AI research in planning, environment 
monitoring, explanation, goal generation, and goal 
management. To explain our conceptualization of the 
problem ARTUE addresses, we present a new conceptual 
framework, goal-driven autonomy, for agents that reason 
about their goals. We evaluate ARTUE on scenarios in the 
TAO Sandbox, a Navy training simulation, and 
demonstrate its novel architecture, which includes 
components for Hierarchical Task Network planning, 
explanation, and goal management. Our evaluation shows 
that ARTUE can perform well in a complex environment 
and that each component is necessary and contributes to 
the performance of the integrated system.   

1.  Introduction

 

Many modern video games and training simulations are 

complex environments that are continuous in time and 

space, partially observable, open with respect to the 

introduction of new objects, and unpredictable due to 

hostile opponents and exogenous events. These 

complications make the environment difficult to predict, 

and plans quickly become obsolete; mechanisms for 

handling surprises and other prediction failures are of 

high importance. To operate autonomously in these 

environments, intelligent agents must perform situation 

assessment, select appropriate goals, create plans to 

satisfy these goals, and execute them. During execution, 
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opportunities and obstacles may occur outside the scope 

of the agent’s current goals, but which are important to its 

central mission. Our focus is on a new generation of 

agents that generate and reason about their goals as a 

primary focus of their reasoning process. 

 This differs from approaches such as online planning, 

in which an agent generates new plans for user-provided 

goals during a plan's execution. We extend online 

planning with a conceptual model of goal-driven 

autonomy (GDA), in which an agent reasons about its 

goals, identifies when they need to be updated, and 

changes or adds to them as needed for subsequent 

planning and execution. We present a conceptual model 

for GDA that integrates four reasoning tasks: environment 

monitoring, discrepancy explanation, goal generation, and 

goal management. Our hypothesis is that GDA enables an 

agent to outperform planning alone in complex 

environments. 

 We instantiate the GDA model in the ARTUE system, 

which integrates: (1) a novel Hierarchical Task Network 

(HTN) planner that reasons about exogenous events by 

projecting future states in dynamic continuous 

environments, (2) an explanation component that reasons 

about hidden information in the environment, (3) a 

component that uses domain knowledge in the form of 

principles to reason about and generate new goals, and (4) 

a goal management component responsible for 

prioritizing and issuing goals to the planner. ARTUE is 

novel in its approach to handling unexpected changes in 

the world by first explaining those changes, then 

generating new goals which incorporate the explained 

knowledge about hidden aspects of the environment. This 

approach allows ARTUE to handle challenges from new 

and unobservable objects within the framework of 

planning. Unlike most modern agents, ARTUE explicitly 

reasons about hidden state, the passage of time, 

continuous and discrete state, and exogenous events. To 

demonstrate its utility, we describe an evaluation of 
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ARTUE on three scenarios from a Navy training 

simulation, the Tactical Action Officer (TAO) Sandbox 

(Auslander et al. 2009). Our ablation study illustrates the 

importance of the four GDA subtasks, showing that each 

contributes significantly to performance. 

2.  Related Work 

Classical planning makes assumptions about how an 

agent finds a sequence of actions that transform an initial 

state into some goal state (Ghallab et al. 2004). GDA 

relaxes several of these assumptions simultaneously, in 

contrast to many efforts that focus on relaxing only some 

subset of these assumptions.  

Deterministic environments: Classical planning assumes 

that each future state is determined by the action executed 

in the current state. Contingency planning relaxes this by 

generating conditional plans that are executed only when 

an action does not achieve its intended effects (Dearden et 

al. 2003). Uncertainty in future state prediction is often 

captured as partial observability, which can be modeled 

using Markov decision processes (Puterman 1994). 

Likhachev and Stentz (2009) observe that these 

approaches scale poorly, and cannot incorporate domain-

specific heuristic knowledge about the environment. To 

address this, their PCPP planner instead reasons about 

preferences between unknown values of the state when 

generating the plan. 

Static environments: Another classical assumption is that 

the environment does not change other than through the 

execution of agent actions. Plan monitoring can be used to 

detect changes in the environment that can cause plan 

failure. For example, incremental planners plan for a 

fixed time horizon, execute the plan, and then generate a 

new plan from the current state. This process continues 

until a goal state is reached. For example, CPEF (Myers 

1999) generates plans to achieve air superiority in military 

combat and replans when unexpected events occur during 

execution (e.g., a plane is shot down). Some recent 

approaches instead focus solely on dynamic replanning 

(e.g., HoTRiDE regenerates only part of its plan when an 

action fails (Ayan et al. 2007)).  

Discrete effects: Complex environments are subject to 

continuous change. For example, a unit’s location, health, 

and fuel all can continuously change over time. However, 

few systems can process continuous effects (e.g., COLIN 

can plan using durative actions  with linear continuous 

effects (Coles et al., 2009)).  

Static goals: Classical planning assumes that the goals are 

all-or-nothing and static. If no plan can achieve all of the 

goals, then classical planners will fail. Partial satisfaction 

planning (PSP) relaxes this all-or-nothing constraint, and 

instead focuses on generating plans that achieve some 

“best” subset of goals (i.e., the plan that gives the 

maximum trade-off between total achieved goal utilities 

and total incurred action cost) (van den Briel et al. 2004). 

Other researchers have addressed the limitations of static 

goals. For example, Coddington and Luck (2004) 

bestowed agents with motivations, which generate goals 

in response to specific states. For example, if a rover’s 

battery charge falls below 50%, then a goal to attain a full 

battery charge will be generated (Meneguzzi and Luck 

2007). Another approach is to allow for goals to reference 

objects that are unknown at planning time. Open world 

quantified goals combine information about sensing 

objects and generating goals into an existing PSP system 

(Talamadupula et al. 2009). Similarly, Goldman (2009) 

describes a system with universally quantified goals that 

allows planning for sets of entities whose cardinality is 

unknown at planning time. Several systems (e.g., PECAS 

(Hawes et al, 2009)) generate goals at execution time 

based on a human’s requests or commands. 

 Although these assumptions characterize complex 

environments, none of these previous efforts relax all four 

simultaneously, which is the focus of GDA.  

 There is a rich history of developing agent architectures 

for increasingly sophisticated environments, e.g., 

TACAIR-SOAR (Jones et al. 1999). Unlike reactive 

architectures, such as ICARUS (Langley and Choi 2006), 

GDA separates environmental and goal reasoning from 

action selection, which permits additional reflection as 

required.  Recently, Choi (2010) has been working on 

extensions to the Icarus architecture which create goals 

using constraint-like goal descriptions, Furthermore, the 

goals considered here may differ substantially from the 

current goals and consequently should not be considered 

subgoals. They may be autonomously generated, and 

Figure 1: A Conceptual Model for Goal-Driven Autonomy 
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involve objects that are not known or available until 

execution time. We detail the GDA framework in Section 

3.  

3.  Goal-Driven Autonomy  

Cox’s (2007) INTRO system provides the inspiration for 

several concepts in goal-driven autonomy with its focus 

on integrated planning, execution, and goal reasoning. We 

extend these ideas and consider them as a general agent 

framework. 

GDA is a conceptual model of online planning in 

autonomous agents. Figure 1 illustrates how GDA extends 

Nau’s (2007) model of online planning. The GDA model 

primarily expands and details the scope of the Controller, 

which interacts with a Planner and a State Transition 

System Σ (an execution environment). We present only a 

simplified version of this model, and the ARTUE system 

is only one possible implementation. 

System Σ is a tuple (S,A,E,γ) with states S, actions A, 

exogenous events E, and state transition function γ: 

S(AE)2
S
, which describes how an action’s execution 

or an event’s occurrence transforms the environment from 

one state to another. In complex environments, the agent 

has only partial access to the state, set of events, and state 

transition function. 

The Planner receives as input a planning problem 

(MΣ,sc,gc), where MΣ is a model of Σ, sc is the current 

state, and gcG is a goal that can be satisfied by some set 

of states SgS. The Planner outputs a plan pc, which is a 

sequence of actions Ac=[ac,…,ac+n]. In the GDA model, 

the Planner generates a corresponding sequence of 

expectations Xc=[xc,…xc+n], where each xiXc is a set of 

state constraints corresponding to the sequence of states 

[sc+1,…,sc+n+1] expected to occur when executing Ac in sc 

using MΣ. 

The Controller sends the actions in the plan to Σ and 

processes the resulting observations. The GDA model 

takes as input initial state s0, initial goal g0, and MΣ, which 

are sent to the Planner to generate plan p0 and 

expectations X0. When executing p0, the Controller 

performs the following four knowledge-intensive tasks, 

which uniquely distinguish the GDA model:  

1. Discrepancy detection: GDA must first detect 

unexpected events before deciding how to respond to 

them. This task compares the observations sc+1 

obtained from executing action ac in state sc with the 

expectation xcX (i.e., it tests for constraint violations 

corresponding to unexpected observations). If one or 

more discrepancies dD are found, then explanation 

generation is performed to explain them.  

2. Explanation generation: The cause for a detected 

discrepancy must be revealed so that it can be 

addressed. Given a state sc and discrepancy(ies) dD, 

this task hypothesizes one or more explanations eE 

of their cause.  

3. Goal generation: Resolving the discrepancies may 

warrant a change in the current goal(s). This task 

generates goal(s) gG in response to D, given 

explanation(s) eE and the current state scS.  

4. Goal management: The generation of a new goal may 

warrant its immediate focus and/or removal of some 

existing goals. Given a set of pending goals GPG 

(one or more of which may be the focus of the current 

plan execution) and new goal(s) gG, this task may 

update GP (e.g., by adding g and/or deleting/modifying 

other pending goals) and will select the next goal(s) 

g′GP to be given to the Planner. (It is possible that 

g=g′.) 

GDA makes no commitments to specific types of 

algorithms for the highlighted tasks (e.g., goal 

management may involve comprehensive goal 

transformations (Cox and Veloso 1998)), and treats the 

Planner as a black box. In Section 5, we describe one 

instantiation of this model.   

4. The TAO Sandbox Environment 

The TAO Sandbox is a strategy simulator used by the US 

Navy to train Tactical Action Officers in anti-submarine 

warfare (Auslander et al. 2009). Figure 2 shows a 

screenshot from the TAO Sandbox. In this simulation, 

trainees accomplish their objectives by giving orders to 

naval ships, planes, and helicopters. Vessel positions, fuel 

levels, heading, and speed are important fluents, 

continuously varying numeric quantities, in this domain. 

The trainee’s actions are orders, which occur 

instantaneously. The effects of these orders may be 

instantaneous (e.g., launch a helicopter), of fixed duration 

(e.g., move to a specific location), or of indefinite 

Figure 2: A screen shot from the TAO Sandbox with 

callouts highlighting friendly and enemy units. 
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duration (e.g., follow another vessel). Therefore, agents 

interacting with the simulation must reason about 

instantaneous occurrences and continuous effects. 

 Attempting missions in the TAO Sandbox 

autonomously is a continuous planning problem 

(desJardins et al. 1999). Opportunities and failures arise 

that require an effective response. In addition to being 

continuous, we define complex environments to be 

partially observable, and open with respect to new objects 

and unpredictable events. Therefore, our GDA agent 

monitors both the continuous and discrete state of the 

environment during plan execution.  

 In order to describe and reason about the TAO Sandbox 

environment, we modeled it using the domain language 

PDDL+. PDDL+ (Fox and Long 2006) was designed to 

support reasoning about mixed discrete-continuous 

domains, such as the TAO Sandbox. In addition to the 

actions of traditional planning, changes to the discrete 

state occur as the result of instantaneous events in the 

environment, some of which can be predicted, and others 

of which can only be recognized afterward. To capture 

changes in the continuous state, PDDL+ introduces 

ongoing processes, which are defined by their participant 

types, conditions, and effects.  

5.  The ARTUE Prototype 

To explain ARTUE’s novel features and the integration of 

components resulting in a GDA system, we describe a 

cycle of ARTUE’s execution in a simplified version of a 

Norwegian transport scenario from the TAO Sandbox 

domain. This scenario involves four objects: a transport 

ship, two ports, and a destination. ARTUE’s user-supplied 

goal is to move the transport ship to the destination. This 

is at first a simple goal to achieve, but as the scenario 

progresses, a severe storm will rise quickly that can sink 

the ship; this storm cannot be (directly) observed until a 

time too late to save the ship. To protect itself, the ship 

may seek shelter in one of two ports. Further complicating 

the situation, unseen icebergs are in the water that can 

stop the ship. To safely guide the ship to its destination, 

ARTUE will need to execute plans, monitor them for 

failures, determine why those failures occurred, and 

generate new goals.  

5.1. HTN Planning 

In GDA, the Planner generates (1) plans to satisfy the 

goals selected by the system and (2) expectations about 

how the environment will change during plan execution. 

For ARTUE, we extended the SHOP2 HTN planner (Nau 

et al. 2003) to reason about PDDL+ domains. Our 

extensions include the addition of a wait action, which 

allows SHOP2 to incorporate the passage of time in its 

plans, and a state projection algorithm, which projects the 

continuous effects of active processes and the timing of 

exogenous events. For further details, see (Molineaux et 

al. 2010). 

 ARTUE begins with the task: (MoveShip Ship1 

Destination1). Our HTN methods decompose this task 

into the following actions: (navigate Ship1 

Destination1), (wait 10). Using the state projection 

algorithm, the Planner predicts changes to the continuous 

and discrete state throughout the plan’s execution (e.g., 

the expected changes in the ship’s location throughout its 

movement). 

5.2. Discrepancy Detection 

In the GDA framework, an agent must monitor the state 

for unexpected events. ARTUE does this by examining 

the state whenever a wait action completes and at fixed 

intervals during longer waits. Discrepancies between the 

observed state and the expected state projected by the 

Planner trigger the explanation generation process. 

 For discrete states, discrepancies are found using a set 

difference operation between the set of expected literals 

and the set of observed literals. For continuous states, the 

observed and expected value of each fluent is compared; a 

discrepancy is considered to occur whenever these values 

differ by less than 0.1% of the (absolute) observed value. 

In our example, after 5 minutes, a lightning strike is 

observed in the environment. As this was not predicted, 

the literal (see lightning) is present in the observed 

discrete state but not the expected discrete state, which 

triggers explanation generation.  

5.3. Explanation Generation 

Discrepancies between an expected state and an actual 

state arise as a result of one of three circumstances:  

1. A hidden factor is influencing the state.  

2. The dynamics according to which the state was 

projected were incorrect, meaning that the agent’s 

domain knowledge is flawed. 

3. The perception of the state is incorrect. 

ARTUE generates explanations of discrepancies in search 

of the hidden factors that affect the state in the first case; 

the other two cases are primarily distractions for our 

purposes (see below). Explanations are produced by 

abduction over the conditions and effects found in the 

planning domain using an Assumption-based Truth 

Maintenance System (ATMS; de Kleer 1986). 

 Before execution time, ARTUE transforms the PDDL+ 

domain into a set of ATMS rules that infers the effects of 

all processes and events in the domain over some known 

period of time during which no non-wait actions occur. 

For reasoning about hidden state, the planning domain 
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includes a set of hidden predicates, which refer to 

information that cannot be observed directly, but can be 

abduced during explanation, as well as processes and 

events that are defined using these hidden predicates. 
 During explanation, a list of possible hidden facts is 
generated using a list of hidden discrete predicates 
belonging to the domain, a list of all known objects from 
the observed state, and skolem objects which stand for 
possible unobserved objects. All of these possible literals 
become assumptions, facts that may be assumed to be part 
of the state if no contradiction occurs.   
 Using this information, the ATMS searches for possible 
worlds containing only observed facts and (assumed) 
hidden facts that are consistent with the generated rules.  
 One complication to this process comes from 
inaccurate perceptions. In continuous environments, 
measuring and rounding errors often make exact 
perceptions impossible. Therefore, ARTUE considers 
possible worlds to be consistent when fluent values are 
“close enough” to the observed values. Just as in 
discrepancy detection, measurements within 0.1% of the 
observed value are considered equivalent. This is, 
admittedly, a poor model of perception error, and can be 
improved in future work. 
 Another complication occurs when domain knowledge 
is incomplete. ARTUE allows for the possibility that not 
all processes and events in the environment are specified 
completely and accurately. If no consistent possible 
worlds are found, a partial explanation can still be 
constructed. Therefore, ARTUE searches for possible 
worlds in which each successor fact, by itself, is 
consistent with all the prior facts. When no such world 
can be found, the fact that cannot be explained is 
discarded. Explanation then takes place over all remaining 
facts that are true in some known possible world. In future 
work, explanation failures due to incomplete domain 
knowledge could lead to the construction of learning 
goals (Ram and Leake 1995) to refine ARTUE’s 
knowledge.  
 Ideally, after explanation generation ARTUE will have 
found one or more possible worlds in which all of the 
observed facts are true. If so, then the assumptions shared 
by all possible explanations will be added to the agent’s 
beliefs about the current state and can be used in goal 
generation and future planning steps.  
 In the running example, explanation generation finds a 
single possible world, containing one assumption, 
(stormApproaching Ship1), which explains the 
lightning strike. This fact is adopted as a belief, and goal 
generation is triggered. 

5.4. Goal Generation 

In GDA, the agent considers the explained 
discrepancy(ies) and the current state to determine what 
goals, if any, should be generated. ARTUE uses 
background knowledge for this task in the form of 
principles, which are schemas whose components are a 
set of participants, a condition, an intensity level, and a 

goal form. Each participant is assigned a type (e.g., 
FriendlyShip). Conditions are statements concerning the 
participants that must hold in the agent’s beliefs to 
generate the goal specified by the goal form. The intensity 
level is a fixed value proportional to the importance or 
urgency of satisfying the generated goal. Once a goal is 
generated, the intensity of the principle used to generate it 
is passed with the goal to the goal manager. 
 In our example, given the approaching storm 
explanation and the current state, ARTUE attempts to  
generate goals for each of its principles. When some set 
of objects from the agent’s beliefs correspond to the 
principle’s participant types and satisfy its condition, the 
corresponding goal is generated.  

Table 1: A principle directing the agent to spawn a find shelter 

goal to avoid an incoming storm. 

 Using the principle in table 1, ARTUE finds one set of 
objects that satisfies the conditions according to its 
current beliefs (i.e., ?vehicle = Ship1). For this set of 
entities, the agent creates an instantiation of the 
principle’s goal form and asserts it as a goal (i.e., 
(DirectShipToShelter Ship1)). This goal and its 
intensity are added to the list of pending goals, which 
becomes:  
 (MoveShip Ship1 Destination1) 

 LowIntensity 

 (DirectShipToShelter Ship1)  
 HighIntensity 

5.5. Goal Management 

Given multiple goals, the agent must decide which one to 
pursue next, and how to act in the presence of competing 
goals. We call this task goal management. Currently, 
ARTUE can only execute one plan at a time. When 
multiple goals exist, the goal with the highest intensity is 
selected. If the Planner cannot generate a plan to achieve 
that goal, the goal with the next highest intensity is 
selected, until an achievable goal is found. 

In our example, two goals are active: 
(DirectShipToShelter Ship1) and (MoveShip 

Ship1 Destination1). The first goal has a higher 
intensity, and given that the Planner can generate a plan to 
satisfy it, it becomes the selected goal.  

6.  Evaluation 

We present results for three scenarios defined in the TAO 
Sandbox environment. In each of these scenarios, a 
situation arises outside the scope of the agent’s goals that 

Name FindShelter 

Participants ?vehicle type = FriendlyShip 

Condition (stormApproaching ?vehicle) 

Intensity 

Level 

HighIntensity 

Goal form (DirectShipToShelter ?vehicle) 
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is nonetheless highly important to address. Performance is 
scored using a scenario-specific score metric based on 
satisfaction of a user-specified goal as well as the 
response to an unexpected situation. To demonstrate the 
contribution of each component, we constrast the ARTUE 
agent with three ablated versions: PLAN1, REPLAN, and 
EXPLAIN. PLAN1 performs planning once and never 
changes its plan. REPLAN monitors the environment for 
discrepancies and changes its plan when any 
discrepancies are detected, but does not generate 
explanations or change its goals. EXPLAIN explains 
discrepancies it detects in the environment, adding to its 
beliefs about the current state, but forms no new goals. 
Finally, the complete GDA agent, ARTUE, monitors, 
explains, and generates and manages its own goals. 
 The three scenarios that we use to test ARTUE differ 
widely in their tasks, so as to illustrate its generality. For 
ARTUE, parameterization is minimal and knowledge 
creation costs are high. Domain knowledge for ARTUE 
consists of the PDDL+ domain, HTN methods and tasks, 
a set of principles, and rules used in goal generation. The 
amounts of knowledge created for the TAO Sandbox 
domain, covering all 3 scenarios, is as follows:  22 
defined types, 115 predicate forms (17 hidden), 8 fluent 
forms, 33 action models, 37 event models, 7 process 
models, 42 tasks, 148 methods,  9 principles, and 28 goal 
generation rules. 
 In the first scenario, Scouting, ARTUE is given a goal 
to identify nearby ships. To do this, a task group vessel 
must be sent close enough to visually identify each 
unknown ship. During this exercise, a hidden submarine 
torpedoes a nearby ship, causing it to sink. The score is 
based on identifying each of the nearby ships as well as 
the sub (which requires special sensors), and also 
destroying the sub, which is outside the scope of the user-
supplied goal.  
 In the second scenario, Iceberg, a ship is transporting 
cargo to a destination in Norway. During its transport, a 
storm arises, which is presaged by a lightning strike. This 
strike causes a large iceberg to calve, blocking the 
entrance to a nearby port. Due to the storm’s severity, all 
ships must seek shelter, and a nearby ship, which does not 
detect the iceberg, founders on it. The score for this 
scenario is based on how close the ship comes to its 
destination, how long it survives, and how early it’s able 
to arrive to rescue the passengers aboard the foundering 
ship, which is outside the scope of its supplied goals. 
 The third scenario, SubHunt, involves a search for an 
enemy sub that has been spotted nearby. A ship is sent out 
to find and engage it. However, this sub has been laying 
mines which can incapacitate the searching ship. Points 
are awarded for finding and destroying the sub, as well as 
sweeping the mines. We tested each agent 25 times 
per scenario with random variation in object starting 
locations and prearranged events, and held these constant 
across all versions. Table 2 shows the average scores for 
each agent on each scenario. All scores are scaled 
between 0 and 1, with 1 being the maximum performance. 

However, scores are not directly relatable between 
scenarios. The difference between GDA and each ablated 
agent is statistically significant (p<.0001) in each 
scenario. In addition, the differences between successive 
ablations are also significant (p<.01). 

Table 2: Agent scores in the TAO Sandbox ablation study 

Agent Scouting Iceberg SubHunt 

PLAN1 0.33 0.35 0.35 

REPLAN 0.40 0.48 0.48 

EXPLAIN 0.58 0.64 0.74 

ARTUE 0.74 0.73 0.98 

 To illustrate the complexity of the reported scenarios, 
table 3 lists the following characteristics describing how 
much work ARTUE performed on each scenario averaged 
over 25 runs: number of discrepancy checks, number of 
replans, average (longest) plan length, average (longest) 
simulated time, and average (longest) clock time. Most of 
ARTUE’s clock time is spent in explanation, which 
searches through a set of world states which is 
exponential in the number of discrepancies. 

Table 3: Scenario Difficulty Characteristics 

Characteristic Scouting Iceberg SubHunt 

# Discrepancy Checks 24.6 30.4 16.5 

# Replans 10.4 5.5 11.5 

Plan Length 50 (149) 36 (463) 10.1 (45) 

Sim. Time (mins) 18 (49) 153 (240) 84 (126) 

Clock Time (mins) 10 (22) 15 (28) 3.5 (6) 

 This study helps to identify the capabilities that each 
GDA task provides. PLAN1 cannot tolerate even minor 
changes expectation failures. REPLAN responds correctly 
to small unexpected events such as course changes that 
occur during the Identify scenario. This requires that the 
event and its repercussions be immediately apparent. 
EXPLAIN adapts well to both the unexpected storm and 
the enemy submarine because it deduces their presence 
without sighting them and plans around them. Finally, 
ARTUE’s goal generation and management steps are 
useful when unexpected situations arise which suggest 
pursuing other goals that most agents would not consider, 
such as saving the sinking ship. 

7.  General Discussion 

These results support our hypothesis that GDA agents like 
ARTUE can competently respond to unexpected events in 
complex environments. By conception, the GDA process 
integrates a diverse set of AI components. Our evaluation 
shows that each component produces a significant 
increase in performance, and each component makes the 
contribution of successor components possible.  
 In particular, ARTUE integrates HTN planning with 
continuous effects, discrepancy detection, explanation 
generation using an ATMS, and goal generation and 
management using principles. Each of these components 
is domain independent. To further evaluate its generality, 
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we are currently applying ARTUE to other strategy 
simulations with complex environments (i.e., open, 
partially observable, continuous environments with 
hostile opponents and exogenous events). 
 Further investigations are warranted for studying GDA 
and its ARTUE implementation in complex task 
environments. Additional research is required on 
individual components (e.g., the HTN planning 
extensions for continuous effects, categorization of 
discrepancies, and principles for goal generation) as well 
as their integration in GDA agents for complex 
environments. These investigations will extend ARTUE 
toward our vision of robust autonomy.  

Acknowledgements 

Thanks to our reviewers. This work was sponsored by 
DARPA/IPTO. Thanks to PM Michael Cox for providing 
motivation and technical direction. Matthew Klenk is 
supported by an NRC postdoctoral fellowship. The views, 
opinions, and findings contained in this paper are those of 
the authors and should not be interpreted as representing 
the official views or policies, either expressed or implied, 
of DARPA or the DoD.   

References 

Auslander, B., Molineaux, M., Aha, D.W., Munro, A., & 

Pizzini, Q. (2009). Towards research on goal reasoning with the 

TAO Sandbox (Technical Report AIC-09-155). Washington, 

DC: Naval Research Laboratory, Navy Center for Applied 

Research on AI. 

Ayan, N.F., Kuter, U., Yaman F., & Goldman R. (2007). 

Hotride: Hierarchical ordered task replanning in dynamic 

environments. In F. Ingrand, & K. Rajan (Eds.) Planning and 

Plan Execution for Real-World Systems – Principles and 

Practices for Planning in Execution: Papers from the ICAPS 

Workshop.Providence, RI:  

[http://www.mbari.org/autonomy/ICAPS07-workshop] 

van den Briel, M., Sanchez, R., Do, M.B., & Kambhampati, 

S. (2004). Effective approaches for partial satisfaction (over-

subscription) planning. Proceedings of the Nineteenth National 

Conference on Artificial Intelligence (pp. 562-569). San Jose, 

CA: AAAI Press. 

Choi, D. (2010). Coordinated Execution and Goal 

Management in a Reactive Cognitive Architecture. Ph.D. diss., 

Dept. of Aeronautics & Astronautics, Stanford University., 

Stanford, CA. 

Coddington, A. & Luck, M. (2004). A motivation-based 

planning and execution framework. International Journal on 

Artificial Intelligence Tools. 13(1). 5-25. 

Coles, A.J., Coles, A., Fox, M., and Long, D. (2009). 

Temporal planning in domains with linear processes. 

Proceedings of the International Joint Conference on Artificial 

Intelligence (pp. 1671-1676). Pasadena, CA: AAAI Press. 

Cox, M.T. (2007). Perpetual self-aware cognitive agents. AI 

Magazine, 28(1), 32-45. 

Dearden, R., Meuleau, N., Ramakrishnan, S., Smith, D., & 

Washington, R. (2003).  Incremental contingency planning. In 

M. Pistore, H. Geffner, & D. Smith (Eds.) Planning under 

Uncertainty and Incomplete Information: Papers from the 

ICAPS Workshop. Trento, Italy. 

desJardins, M., Durfee, E., Ortiz, C., & Wolverton, M. 

(1999). A survey of research in distributed, continual planning. 

AI Magazine, 20(4), 13–22. 

Fox, M. & Long, D. (2006). Modelling mixed discrete-

continuous domains for planning. Journal of Artificial 

Intelligence Research, 27, 235-297. 

Ghallab, M., Nau, D.S., & Traverso, P. (2004). Automated 

planning: Theory and practice. San Mateo, CA: Morgan 

Kaufmann. 

Goldman, R.P. (2009). Partial observability, quantification, 

and iteration for planning: Work in progress. In Generalized 

Planning: Macros, Loops, Domain Control: Papers from the 

ICAPS Workshop. Thessaloniki, Greece: 

[http://www.cs.umass.edu/~siddhart/genplan09]. 

Hawes, N., Zender, H., Sjöö, K., Brenner, M., Kruijff, 

G.J.M., Jensfelt, P. (2009). Planning and Acting with an 

Integrated Sense of Space. In Proceedings of the 1st 

International Workshop on Hybrid Control of Autonomous 

Systems -- Integrating Learning, Deliberation and Reactive 

Control (HYCAS) (pp. 25-32). 

Jones, R., Laird, J., Nielsen, P., Coulter, K., Kenny, P., and 

Koss, F. (1999). Automated Intelligent Pilots for Combat Flight 

Simulation. AI Magazine. 20(1). 

Langley, P. & Choi, D. (2006). A unified cognitive 

architecture for physical agents. In Proceedings of the twenty-

first AAAI conference on artificial intelligence. Boston, MA: 

AAAI Press.  

Likhachev, M. & Stentz, T. (2009). Probabilistic planning 

with clear preferences on missing information. Artificial 

Intelligence. 173, 696-721. 

Meneguzzi, F.R., & Luck, M. (2007). Motivations as an 

abstraction of meta-level reasoning. Proceedings of the Fifth 

International Central and Eastern European Conference on 

Multi-Agent Systems (pp. 204-214). Leipzig, Germany: Springer. 

Myers, K.L. (1999). CPEF: A continuous planning and 

execution framework. AI Magazine, 20(4), 63-69. 

Nau, D.S. (2007). Current trends in automated planning. AI 

Magazine, 28(4), 43–58. 

Nau, D., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W., 

Wu, D., & Yaman, F. (2003). SHOP2: An HTN planning 

system. Journal of Artificial Intelligence Research. 20, 379–404. 

Puterman, M.L. (1994). Markov Decision Processes: 

Discrete Stochastic Dynamic Programming. New York: John 

Wiley & Sons. 

Ram, A. & Leake, D. (1995) Goal-Driven Learning. 

Cambridge, MA: MIT Press. 

Talamadupula, K., Benton, J., Schermerhorn, P., Kamb-

hampati, S., & Scheutz, M. (2009). Integrating a closed world 

planner with an open world robot: A case study. In Bridging the 

Gap between Task and Motion Planning: Papers from the 

ICAPS Workshop. Thessaloniki, Greece. 


