

Molineaux, M., Klenk, M., and Aha, D. 2010. Goal-driven autonomy in a navy training simulation. In Proceedings of Twenty-Fourth AAAI

Conference on Artificial Intelligence (AAAI-10). Atlanta, GA. 29% acceptance rate.

Goal-Driven Autonomy in a Navy Strategy Simulation

Matt Molineaux
1
, Matthew Klenk

2
, and David W. Aha

2

1Knexus Research Corporation; Springfield, VA 22153
2Navy Center for Applied Research in Artificial Intelligence;

Naval Research Laboratory (Code 5514); Washington, DC 20375

matthew.molineaux@knexusresearch.com | {matthew.klenk.ctr,david.aha}@nrl.navy.mil

Abstract

Modern complex games and simulations pose many
challenges for an intelligent agent, including partial
observability, continuous time and effects, hostile
opponents, and exogenous events. We present ARTUE
(Autonomous Response to Unexpected Events), a domain-
independent autonomous agent that dynamically reasons
about what goals to pursue in response to unexpected
circumstances in these types of environments. ARTUE
integrates AI research in planning, environment
monitoring, explanation, goal generation, and goal
management. To explain our conceptualization of the
problem ARTUE addresses, we present a new conceptual
framework, goal-driven autonomy, for agents that reason
about their goals. We evaluate ARTUE on scenarios in the
TAO Sandbox, a Navy training simulation, and
demonstrate its novel architecture, which includes
components for Hierarchical Task Network planning,
explanation, and goal management. Our evaluation shows
that ARTUE can perform well in a complex environment
and that each component is necessary and contributes to
the performance of the integrated system.

1. Introduction

Many modern video games and training simulations are

complex environments that are continuous in time and

space, partially observable, open with respect to the

introduction of new objects, and unpredictable due to

hostile opponents and exogenous events. These

complications make the environment difficult to predict,

and plans quickly become obsolete; mechanisms for

handling surprises and other prediction failures are of

high importance. To operate autonomously in these

environments, intelligent agents must perform situation

assessment, select appropriate goals, create plans to

satisfy these goals, and execute them. During execution,

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

opportunities and obstacles may occur outside the scope

of the agent’s current goals, but which are important to its

central mission. Our focus is on a new generation of

agents that generate and reason about their goals as a

primary focus of their reasoning process.

 This differs from approaches such as online planning,

in which an agent generates new plans for user-provided

goals during a plan's execution. We extend online

planning with a conceptual model of goal-driven

autonomy (GDA), in which an agent reasons about its

goals, identifies when they need to be updated, and

changes or adds to them as needed for subsequent

planning and execution. We present a conceptual model

for GDA that integrates four reasoning tasks: environment

monitoring, discrepancy explanation, goal generation, and

goal management. Our hypothesis is that GDA enables an

agent to outperform planning alone in complex

environments.

 We instantiate the GDA model in the ARTUE system,

which integrates: (1) a novel Hierarchical Task Network

(HTN) planner that reasons about exogenous events by

projecting future states in dynamic continuous

environments, (2) an explanation component that reasons

about hidden information in the environment, (3) a

component that uses domain knowledge in the form of

principles to reason about and generate new goals, and (4)

a goal management component responsible for

prioritizing and issuing goals to the planner. ARTUE is

novel in its approach to handling unexpected changes in

the world by first explaining those changes, then

generating new goals which incorporate the explained

knowledge about hidden aspects of the environment. This

approach allows ARTUE to handle challenges from new

and unobservable objects within the framework of

planning. Unlike most modern agents, ARTUE explicitly

reasons about hidden state, the passage of time,

continuous and discrete state, and exogenous events. To

demonstrate its utility, we describe an evaluation of

Molineaux, M., Klenk, M., and Aha, D. 2010. Goal-driven autonomy in a navy training simulation. In Proceedings of Twenty-Fourth AAAI

Conference on Artificial Intelligence (AAAI-10). Atlanta, GA. 29% acceptance rate.

ARTUE on three scenarios from a Navy training

simulation, the Tactical Action Officer (TAO) Sandbox

(Auslander et al. 2009). Our ablation study illustrates the

importance of the four GDA subtasks, showing that each

contributes significantly to performance.

2. Related Work

Classical planning makes assumptions about how an

agent finds a sequence of actions that transform an initial

state into some goal state (Ghallab et al. 2004). GDA

relaxes several of these assumptions simultaneously, in

contrast to many efforts that focus on relaxing only some

subset of these assumptions.

Deterministic environments: Classical planning assumes

that each future state is determined by the action executed

in the current state. Contingency planning relaxes this by

generating conditional plans that are executed only when

an action does not achieve its intended effects (Dearden et

al. 2003). Uncertainty in future state prediction is often

captured as partial observability, which can be modeled

using Markov decision processes (Puterman 1994).

Likhachev and Stentz (2009) observe that these

approaches scale poorly, and cannot incorporate domain-

specific heuristic knowledge about the environment. To

address this, their PCPP planner instead reasons about

preferences between unknown values of the state when

generating the plan.

Static environments: Another classical assumption is that

the environment does not change other than through the

execution of agent actions. Plan monitoring can be used to

detect changes in the environment that can cause plan

failure. For example, incremental planners plan for a

fixed time horizon, execute the plan, and then generate a

new plan from the current state. This process continues

until a goal state is reached. For example, CPEF (Myers

1999) generates plans to achieve air superiority in military

combat and replans when unexpected events occur during

execution (e.g., a plane is shot down). Some recent

approaches instead focus solely on dynamic replanning

(e.g., HoTRiDE regenerates only part of its plan when an

action fails (Ayan et al. 2007)).

Discrete effects: Complex environments are subject to

continuous change. For example, a unit’s location, health,

and fuel all can continuously change over time. However,

few systems can process continuous effects (e.g., COLIN

can plan using durative actions with linear continuous

effects (Coles et al., 2009)).

Static goals: Classical planning assumes that the goals are

all-or-nothing and static. If no plan can achieve all of the

goals, then classical planners will fail. Partial satisfaction

planning (PSP) relaxes this all-or-nothing constraint, and

instead focuses on generating plans that achieve some

“best” subset of goals (i.e., the plan that gives the

maximum trade-off between total achieved goal utilities

and total incurred action cost) (van den Briel et al. 2004).

Other researchers have addressed the limitations of static

goals. For example, Coddington and Luck (2004)

bestowed agents with motivations, which generate goals

in response to specific states. For example, if a rover’s

battery charge falls below 50%, then a goal to attain a full

battery charge will be generated (Meneguzzi and Luck

2007). Another approach is to allow for goals to reference

objects that are unknown at planning time. Open world

quantified goals combine information about sensing

objects and generating goals into an existing PSP system

(Talamadupula et al. 2009). Similarly, Goldman (2009)

describes a system with universally quantified goals that

allows planning for sets of entities whose cardinality is

unknown at planning time. Several systems (e.g., PECAS

(Hawes et al, 2009)) generate goals at execution time

based on a human’s requests or commands.

 Although these assumptions characterize complex

environments, none of these previous efforts relax all four

simultaneously, which is the focus of GDA.

 There is a rich history of developing agent architectures

for increasingly sophisticated environments, e.g.,

TACAIR-SOAR (Jones et al. 1999). Unlike reactive

architectures, such as ICARUS (Langley and Choi 2006),

GDA separates environmental and goal reasoning from

action selection, which permits additional reflection as

required. Recently, Choi (2010) has been working on

extensions to the Icarus architecture which create goals

using constraint-like goal descriptions, Furthermore, the

goals considered here may differ substantially from the

current goals and consequently should not be considered

subgoals. They may be autonomously generated, and

Figure 1: A Conceptual Model for Goal-Driven Autonomy

Molineaux, M., Klenk, M., and Aha, D. 2010. Goal-driven autonomy in a navy training simulation. In Proceedings of Twenty-Fourth AAAI

Conference on Artificial Intelligence (AAAI-10). Atlanta, GA. 29% acceptance rate.

involve objects that are not known or available until

execution time. We detail the GDA framework in Section

3.

3. Goal-Driven Autonomy

Cox’s (2007) INTRO system provides the inspiration for

several concepts in goal-driven autonomy with its focus

on integrated planning, execution, and goal reasoning. We

extend these ideas and consider them as a general agent

framework.

GDA is a conceptual model of online planning in

autonomous agents. Figure 1 illustrates how GDA extends

Nau’s (2007) model of online planning. The GDA model

primarily expands and details the scope of the Controller,

which interacts with a Planner and a State Transition

System Σ (an execution environment). We present only a

simplified version of this model, and the ARTUE system

is only one possible implementation.

System Σ is a tuple (S,A,E,γ) with states S, actions A,

exogenous events E, and state transition function γ:

S(AE)2
S
, which describes how an action’s execution

or an event’s occurrence transforms the environment from

one state to another. In complex environments, the agent

has only partial access to the state, set of events, and state

transition function.

The Planner receives as input a planning problem

(MΣ,sc,gc), where MΣ is a model of Σ, sc is the current

state, and gcG is a goal that can be satisfied by some set

of states SgS. The Planner outputs a plan pc, which is a

sequence of actions Ac=[ac,…,ac+n]. In the GDA model,

the Planner generates a corresponding sequence of

expectations Xc=[xc,…xc+n], where each xiXc is a set of

state constraints corresponding to the sequence of states

[sc+1,…,sc+n+1] expected to occur when executing Ac in sc

using MΣ.

The Controller sends the actions in the plan to Σ and

processes the resulting observations. The GDA model

takes as input initial state s0, initial goal g0, and MΣ, which

are sent to the Planner to generate plan p0 and

expectations X0. When executing p0, the Controller

performs the following four knowledge-intensive tasks,

which uniquely distinguish the GDA model:

1. Discrepancy detection: GDA must first detect

unexpected events before deciding how to respond to

them. This task compares the observations sc+1

obtained from executing action ac in state sc with the

expectation xcX (i.e., it tests for constraint violations

corresponding to unexpected observations). If one or

more discrepancies dD are found, then explanation

generation is performed to explain them.

2. Explanation generation: The cause for a detected

discrepancy must be revealed so that it can be

addressed. Given a state sc and discrepancy(ies) dD,

this task hypothesizes one or more explanations eE

of their cause.

3. Goal generation: Resolving the discrepancies may

warrant a change in the current goal(s). This task

generates goal(s) gG in response to D, given

explanation(s) eE and the current state scS.

4. Goal management: The generation of a new goal may

warrant its immediate focus and/or removal of some

existing goals. Given a set of pending goals GPG

(one or more of which may be the focus of the current

plan execution) and new goal(s) gG, this task may

update GP (e.g., by adding g and/or deleting/modifying

other pending goals) and will select the next goal(s)

g′GP to be given to the Planner. (It is possible that

g=g′.)

GDA makes no commitments to specific types of

algorithms for the highlighted tasks (e.g., goal

management may involve comprehensive goal

transformations (Cox and Veloso 1998)), and treats the

Planner as a black box. In Section 5, we describe one

instantiation of this model.

4. The TAO Sandbox Environment

The TAO Sandbox is a strategy simulator used by the US

Navy to train Tactical Action Officers in anti-submarine

warfare (Auslander et al. 2009). Figure 2 shows a

screenshot from the TAO Sandbox. In this simulation,

trainees accomplish their objectives by giving orders to

naval ships, planes, and helicopters. Vessel positions, fuel

levels, heading, and speed are important fluents,

continuously varying numeric quantities, in this domain.

The trainee’s actions are orders, which occur

instantaneously. The effects of these orders may be

instantaneous (e.g., launch a helicopter), of fixed duration

(e.g., move to a specific location), or of indefinite

Figure 2: A screen shot from the TAO Sandbox with

callouts highlighting friendly and enemy units.

Molineaux, M., Klenk, M., and Aha, D. 2010. Goal-driven autonomy in a navy training simulation. In Proceedings of Twenty-Fourth AAAI

Conference on Artificial Intelligence (AAAI-10). Atlanta, GA. 29% acceptance rate.

duration (e.g., follow another vessel). Therefore, agents

interacting with the simulation must reason about

instantaneous occurrences and continuous effects.

 Attempting missions in the TAO Sandbox

autonomously is a continuous planning problem

(desJardins et al. 1999). Opportunities and failures arise

that require an effective response. In addition to being

continuous, we define complex environments to be

partially observable, and open with respect to new objects

and unpredictable events. Therefore, our GDA agent

monitors both the continuous and discrete state of the

environment during plan execution.

 In order to describe and reason about the TAO Sandbox

environment, we modeled it using the domain language

PDDL+. PDDL+ (Fox and Long 2006) was designed to

support reasoning about mixed discrete-continuous

domains, such as the TAO Sandbox. In addition to the

actions of traditional planning, changes to the discrete

state occur as the result of instantaneous events in the

environment, some of which can be predicted, and others

of which can only be recognized afterward. To capture

changes in the continuous state, PDDL+ introduces

ongoing processes, which are defined by their participant

types, conditions, and effects.

5. The ARTUE Prototype

To explain ARTUE’s novel features and the integration of

components resulting in a GDA system, we describe a

cycle of ARTUE’s execution in a simplified version of a

Norwegian transport scenario from the TAO Sandbox

domain. This scenario involves four objects: a transport

ship, two ports, and a destination. ARTUE’s user-supplied

goal is to move the transport ship to the destination. This

is at first a simple goal to achieve, but as the scenario

progresses, a severe storm will rise quickly that can sink

the ship; this storm cannot be (directly) observed until a

time too late to save the ship. To protect itself, the ship

may seek shelter in one of two ports. Further complicating

the situation, unseen icebergs are in the water that can

stop the ship. To safely guide the ship to its destination,

ARTUE will need to execute plans, monitor them for

failures, determine why those failures occurred, and

generate new goals.

5.1. HTN Planning

In GDA, the Planner generates (1) plans to satisfy the

goals selected by the system and (2) expectations about

how the environment will change during plan execution.

For ARTUE, we extended the SHOP2 HTN planner (Nau

et al. 2003) to reason about PDDL+ domains. Our

extensions include the addition of a wait action, which

allows SHOP2 to incorporate the passage of time in its

plans, and a state projection algorithm, which projects the

continuous effects of active processes and the timing of

exogenous events. For further details, see (Molineaux et

al. 2010).

 ARTUE begins with the task: (MoveShip Ship1

Destination1). Our HTN methods decompose this task

into the following actions: (navigate Ship1

Destination1), (wait 10). Using the state projection

algorithm, the Planner predicts changes to the continuous

and discrete state throughout the plan’s execution (e.g.,

the expected changes in the ship’s location throughout its

movement).

5.2. Discrepancy Detection

In the GDA framework, an agent must monitor the state

for unexpected events. ARTUE does this by examining

the state whenever a wait action completes and at fixed

intervals during longer waits. Discrepancies between the

observed state and the expected state projected by the

Planner trigger the explanation generation process.

 For discrete states, discrepancies are found using a set

difference operation between the set of expected literals

and the set of observed literals. For continuous states, the

observed and expected value of each fluent is compared; a

discrepancy is considered to occur whenever these values

differ by less than 0.1% of the (absolute) observed value.

In our example, after 5 minutes, a lightning strike is

observed in the environment. As this was not predicted,

the literal (see lightning) is present in the observed

discrete state but not the expected discrete state, which

triggers explanation generation.

5.3. Explanation Generation

Discrepancies between an expected state and an actual

state arise as a result of one of three circumstances:

1. A hidden factor is influencing the state.

2. The dynamics according to which the state was

projected were incorrect, meaning that the agent’s

domain knowledge is flawed.

3. The perception of the state is incorrect.

ARTUE generates explanations of discrepancies in search

of the hidden factors that affect the state in the first case;

the other two cases are primarily distractions for our

purposes (see below). Explanations are produced by

abduction over the conditions and effects found in the

planning domain using an Assumption-based Truth

Maintenance System (ATMS; de Kleer 1986).

 Before execution time, ARTUE transforms the PDDL+

domain into a set of ATMS rules that infers the effects of

all processes and events in the domain over some known

period of time during which no non-wait actions occur.

For reasoning about hidden state, the planning domain

Molineaux, M., Klenk, M., and Aha, D. 2010. Goal-driven autonomy in a navy training simulation. In Proceedings of Twenty-Fourth AAAI

Conference on Artificial Intelligence (AAAI-10). Atlanta, GA. 29% acceptance rate.

includes a set of hidden predicates, which refer to

information that cannot be observed directly, but can be

abduced during explanation, as well as processes and

events that are defined using these hidden predicates.
 During explanation, a list of possible hidden facts is
generated using a list of hidden discrete predicates
belonging to the domain, a list of all known objects from
the observed state, and skolem objects which stand for
possible unobserved objects. All of these possible literals
become assumptions, facts that may be assumed to be part
of the state if no contradiction occurs.
 Using this information, the ATMS searches for possible
worlds containing only observed facts and (assumed)
hidden facts that are consistent with the generated rules.
 One complication to this process comes from
inaccurate perceptions. In continuous environments,
measuring and rounding errors often make exact
perceptions impossible. Therefore, ARTUE considers
possible worlds to be consistent when fluent values are
“close enough” to the observed values. Just as in
discrepancy detection, measurements within 0.1% of the
observed value are considered equivalent. This is,
admittedly, a poor model of perception error, and can be
improved in future work.
 Another complication occurs when domain knowledge
is incomplete. ARTUE allows for the possibility that not
all processes and events in the environment are specified
completely and accurately. If no consistent possible
worlds are found, a partial explanation can still be
constructed. Therefore, ARTUE searches for possible
worlds in which each successor fact, by itself, is
consistent with all the prior facts. When no such world
can be found, the fact that cannot be explained is
discarded. Explanation then takes place over all remaining
facts that are true in some known possible world. In future
work, explanation failures due to incomplete domain
knowledge could lead to the construction of learning
goals (Ram and Leake 1995) to refine ARTUE’s
knowledge.
 Ideally, after explanation generation ARTUE will have
found one or more possible worlds in which all of the
observed facts are true. If so, then the assumptions shared
by all possible explanations will be added to the agent’s
beliefs about the current state and can be used in goal
generation and future planning steps.
 In the running example, explanation generation finds a
single possible world, containing one assumption,
(stormApproaching Ship1), which explains the
lightning strike. This fact is adopted as a belief, and goal
generation is triggered.

5.4. Goal Generation

In GDA, the agent considers the explained
discrepancy(ies) and the current state to determine what
goals, if any, should be generated. ARTUE uses
background knowledge for this task in the form of
principles, which are schemas whose components are a
set of participants, a condition, an intensity level, and a

goal form. Each participant is assigned a type (e.g.,
FriendlyShip). Conditions are statements concerning the
participants that must hold in the agent’s beliefs to
generate the goal specified by the goal form. The intensity
level is a fixed value proportional to the importance or
urgency of satisfying the generated goal. Once a goal is
generated, the intensity of the principle used to generate it
is passed with the goal to the goal manager.
 In our example, given the approaching storm
explanation and the current state, ARTUE attempts to
generate goals for each of its principles. When some set
of objects from the agent’s beliefs correspond to the
principle’s participant types and satisfy its condition, the
corresponding goal is generated.

Table 1: A principle directing the agent to spawn a find shelter

goal to avoid an incoming storm.

 Using the principle in table 1, ARTUE finds one set of
objects that satisfies the conditions according to its
current beliefs (i.e., ?vehicle = Ship1). For this set of
entities, the agent creates an instantiation of the
principle’s goal form and asserts it as a goal (i.e.,
(DirectShipToShelter Ship1)). This goal and its
intensity are added to the list of pending goals, which
becomes:
 (MoveShip Ship1 Destination1)

 LowIntensity

 (DirectShipToShelter Ship1)
 HighIntensity

5.5. Goal Management

Given multiple goals, the agent must decide which one to
pursue next, and how to act in the presence of competing
goals. We call this task goal management. Currently,
ARTUE can only execute one plan at a time. When
multiple goals exist, the goal with the highest intensity is
selected. If the Planner cannot generate a plan to achieve
that goal, the goal with the next highest intensity is
selected, until an achievable goal is found.

In our example, two goals are active:
(DirectShipToShelter Ship1) and (MoveShip

Ship1 Destination1). The first goal has a higher
intensity, and given that the Planner can generate a plan to
satisfy it, it becomes the selected goal.

6. Evaluation

We present results for three scenarios defined in the TAO
Sandbox environment. In each of these scenarios, a
situation arises outside the scope of the agent’s goals that

Name FindShelter

Participants ?vehicle type = FriendlyShip

Condition (stormApproaching ?vehicle)

Intensity

Level

HighIntensity

Goal form (DirectShipToShelter ?vehicle)

Molineaux, M., Klenk, M., and Aha, D. 2010. Goal-driven autonomy in a navy training simulation. In Proceedings of Twenty-Fourth AAAI

Conference on Artificial Intelligence (AAAI-10). Atlanta, GA. 29% acceptance rate.

is nonetheless highly important to address. Performance is
scored using a scenario-specific score metric based on
satisfaction of a user-specified goal as well as the
response to an unexpected situation. To demonstrate the
contribution of each component, we constrast the ARTUE
agent with three ablated versions: PLAN1, REPLAN, and
EXPLAIN. PLAN1 performs planning once and never
changes its plan. REPLAN monitors the environment for
discrepancies and changes its plan when any
discrepancies are detected, but does not generate
explanations or change its goals. EXPLAIN explains
discrepancies it detects in the environment, adding to its
beliefs about the current state, but forms no new goals.
Finally, the complete GDA agent, ARTUE, monitors,
explains, and generates and manages its own goals.
 The three scenarios that we use to test ARTUE differ
widely in their tasks, so as to illustrate its generality. For
ARTUE, parameterization is minimal and knowledge
creation costs are high. Domain knowledge for ARTUE
consists of the PDDL+ domain, HTN methods and tasks,
a set of principles, and rules used in goal generation. The
amounts of knowledge created for the TAO Sandbox
domain, covering all 3 scenarios, is as follows: 22
defined types, 115 predicate forms (17 hidden), 8 fluent
forms, 33 action models, 37 event models, 7 process
models, 42 tasks, 148 methods, 9 principles, and 28 goal
generation rules.
 In the first scenario, Scouting, ARTUE is given a goal
to identify nearby ships. To do this, a task group vessel
must be sent close enough to visually identify each
unknown ship. During this exercise, a hidden submarine
torpedoes a nearby ship, causing it to sink. The score is
based on identifying each of the nearby ships as well as
the sub (which requires special sensors), and also
destroying the sub, which is outside the scope of the user-
supplied goal.
 In the second scenario, Iceberg, a ship is transporting
cargo to a destination in Norway. During its transport, a
storm arises, which is presaged by a lightning strike. This
strike causes a large iceberg to calve, blocking the
entrance to a nearby port. Due to the storm’s severity, all
ships must seek shelter, and a nearby ship, which does not
detect the iceberg, founders on it. The score for this
scenario is based on how close the ship comes to its
destination, how long it survives, and how early it’s able
to arrive to rescue the passengers aboard the foundering
ship, which is outside the scope of its supplied goals.
 The third scenario, SubHunt, involves a search for an
enemy sub that has been spotted nearby. A ship is sent out
to find and engage it. However, this sub has been laying
mines which can incapacitate the searching ship. Points
are awarded for finding and destroying the sub, as well as
sweeping the mines. We tested each agent 25 times
per scenario with random variation in object starting
locations and prearranged events, and held these constant
across all versions. Table 2 shows the average scores for
each agent on each scenario. All scores are scaled
between 0 and 1, with 1 being the maximum performance.

However, scores are not directly relatable between
scenarios. The difference between GDA and each ablated
agent is statistically significant (p<.0001) in each
scenario. In addition, the differences between successive
ablations are also significant (p<.01).

Table 2: Agent scores in the TAO Sandbox ablation study

Agent Scouting Iceberg SubHunt

PLAN1 0.33 0.35 0.35

REPLAN 0.40 0.48 0.48

EXPLAIN 0.58 0.64 0.74

ARTUE 0.74 0.73 0.98

 To illustrate the complexity of the reported scenarios,
table 3 lists the following characteristics describing how
much work ARTUE performed on each scenario averaged
over 25 runs: number of discrepancy checks, number of
replans, average (longest) plan length, average (longest)
simulated time, and average (longest) clock time. Most of
ARTUE’s clock time is spent in explanation, which
searches through a set of world states which is
exponential in the number of discrepancies.

Table 3: Scenario Difficulty Characteristics

Characteristic Scouting Iceberg SubHunt

Discrepancy Checks 24.6 30.4 16.5

Replans 10.4 5.5 11.5

Plan Length 50 (149) 36 (463) 10.1 (45)

Sim. Time (mins) 18 (49) 153 (240) 84 (126)

Clock Time (mins) 10 (22) 15 (28) 3.5 (6)

 This study helps to identify the capabilities that each
GDA task provides. PLAN1 cannot tolerate even minor
changes expectation failures. REPLAN responds correctly
to small unexpected events such as course changes that
occur during the Identify scenario. This requires that the
event and its repercussions be immediately apparent.
EXPLAIN adapts well to both the unexpected storm and
the enemy submarine because it deduces their presence
without sighting them and plans around them. Finally,
ARTUE’s goal generation and management steps are
useful when unexpected situations arise which suggest
pursuing other goals that most agents would not consider,
such as saving the sinking ship.

7. General Discussion

These results support our hypothesis that GDA agents like
ARTUE can competently respond to unexpected events in
complex environments. By conception, the GDA process
integrates a diverse set of AI components. Our evaluation
shows that each component produces a significant
increase in performance, and each component makes the
contribution of successor components possible.
 In particular, ARTUE integrates HTN planning with
continuous effects, discrepancy detection, explanation
generation using an ATMS, and goal generation and
management using principles. Each of these components
is domain independent. To further evaluate its generality,

Molineaux, M., Klenk, M., and Aha, D. 2010. Goal-driven autonomy in a navy training simulation. In Proceedings of Twenty-Fourth AAAI

Conference on Artificial Intelligence (AAAI-10). Atlanta, GA. 29% acceptance rate.

we are currently applying ARTUE to other strategy
simulations with complex environments (i.e., open,
partially observable, continuous environments with
hostile opponents and exogenous events).
 Further investigations are warranted for studying GDA
and its ARTUE implementation in complex task
environments. Additional research is required on
individual components (e.g., the HTN planning
extensions for continuous effects, categorization of
discrepancies, and principles for goal generation) as well
as their integration in GDA agents for complex
environments. These investigations will extend ARTUE
toward our vision of robust autonomy.

Acknowledgements

Thanks to our reviewers. This work was sponsored by
DARPA/IPTO. Thanks to PM Michael Cox for providing
motivation and technical direction. Matthew Klenk is
supported by an NRC postdoctoral fellowship. The views,
opinions, and findings contained in this paper are those of
the authors and should not be interpreted as representing
the official views or policies, either expressed or implied,
of DARPA or the DoD.

References

Auslander, B., Molineaux, M., Aha, D.W., Munro, A., &

Pizzini, Q. (2009). Towards research on goal reasoning with the

TAO Sandbox (Technical Report AIC-09-155). Washington,

DC: Naval Research Laboratory, Navy Center for Applied

Research on AI.

Ayan, N.F., Kuter, U., Yaman F., & Goldman R. (2007).

Hotride: Hierarchical ordered task replanning in dynamic

environments. In F. Ingrand, & K. Rajan (Eds.) Planning and

Plan Execution for Real-World Systems – Principles and

Practices for Planning in Execution: Papers from the ICAPS

Workshop.Providence, RI:

[http://www.mbari.org/autonomy/ICAPS07-workshop]

van den Briel, M., Sanchez, R., Do, M.B., & Kambhampati,

S. (2004). Effective approaches for partial satisfaction (over-

subscription) planning. Proceedings of the Nineteenth National

Conference on Artificial Intelligence (pp. 562-569). San Jose,

CA: AAAI Press.

Choi, D. (2010). Coordinated Execution and Goal

Management in a Reactive Cognitive Architecture. Ph.D. diss.,

Dept. of Aeronautics & Astronautics, Stanford University.,

Stanford, CA.

Coddington, A. & Luck, M. (2004). A motivation-based

planning and execution framework. International Journal on

Artificial Intelligence Tools. 13(1). 5-25.

Coles, A.J., Coles, A., Fox, M., and Long, D. (2009).

Temporal planning in domains with linear processes.

Proceedings of the International Joint Conference on Artificial

Intelligence (pp. 1671-1676). Pasadena, CA: AAAI Press.

Cox, M.T. (2007). Perpetual self-aware cognitive agents. AI

Magazine, 28(1), 32-45.

Dearden, R., Meuleau, N., Ramakrishnan, S., Smith, D., &

Washington, R. (2003). Incremental contingency planning. In

M. Pistore, H. Geffner, & D. Smith (Eds.) Planning under

Uncertainty and Incomplete Information: Papers from the

ICAPS Workshop. Trento, Italy.

desJardins, M., Durfee, E., Ortiz, C., & Wolverton, M.

(1999). A survey of research in distributed, continual planning.

AI Magazine, 20(4), 13–22.

Fox, M. & Long, D. (2006). Modelling mixed discrete-

continuous domains for planning. Journal of Artificial

Intelligence Research, 27, 235-297.

Ghallab, M., Nau, D.S., & Traverso, P. (2004). Automated

planning: Theory and practice. San Mateo, CA: Morgan

Kaufmann.

Goldman, R.P. (2009). Partial observability, quantification,

and iteration for planning: Work in progress. In Generalized

Planning: Macros, Loops, Domain Control: Papers from the

ICAPS Workshop. Thessaloniki, Greece:

[http://www.cs.umass.edu/~siddhart/genplan09].

Hawes, N., Zender, H., Sjöö, K., Brenner, M., Kruijff,

G.J.M., Jensfelt, P. (2009). Planning and Acting with an

Integrated Sense of Space. In Proceedings of the 1st

International Workshop on Hybrid Control of Autonomous

Systems -- Integrating Learning, Deliberation and Reactive

Control (HYCAS) (pp. 25-32).

Jones, R., Laird, J., Nielsen, P., Coulter, K., Kenny, P., and

Koss, F. (1999). Automated Intelligent Pilots for Combat Flight

Simulation. AI Magazine. 20(1).

Langley, P. & Choi, D. (2006). A unified cognitive

architecture for physical agents. In Proceedings of the twenty-

first AAAI conference on artificial intelligence. Boston, MA:

AAAI Press.

Likhachev, M. & Stentz, T. (2009). Probabilistic planning

with clear preferences on missing information. Artificial

Intelligence. 173, 696-721.

Meneguzzi, F.R., & Luck, M. (2007). Motivations as an

abstraction of meta-level reasoning. Proceedings of the Fifth

International Central and Eastern European Conference on

Multi-Agent Systems (pp. 204-214). Leipzig, Germany: Springer.

Myers, K.L. (1999). CPEF: A continuous planning and

execution framework. AI Magazine, 20(4), 63-69.

Nau, D.S. (2007). Current trends in automated planning. AI

Magazine, 28(4), 43–58.

Nau, D., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W.,

Wu, D., & Yaman, F. (2003). SHOP2: An HTN planning

system. Journal of Artificial Intelligence Research. 20, 379–404.

Puterman, M.L. (1994). Markov Decision Processes:

Discrete Stochastic Dynamic Programming. New York: John

Wiley & Sons.

Ram, A. & Leake, D. (1995) Goal-Driven Learning.

Cambridge, MA: MIT Press.

Talamadupula, K., Benton, J., Schermerhorn, P., Kamb-

hampati, S., & Scheutz, M. (2009). Integrating a closed world

planner with an open world robot: A case study. In Bridging the

Gap between Task and Motion Planning: Papers from the

ICAPS Workshop. Thessaloniki, Greece.

